Email updates

Keep up to date with the latest news and content from Fibrogenesis & Tissue Repair and BioMed Central.

Open Access Open Badges Research

Autocrine transforming growth factor β signaling regulates extracellular signal-regulated kinase 1/2 phosphorylation via modulation of protein phosphatase 2A expression in scleroderma fibroblasts

Glady H Samuel12, Andreea M Bujor1, Sashidhar S Nakerakanti1, Faye N Hant2 and Maria Trojanowska1*

Author Affiliations

1 Arthritis Center, Division of Rheumatology, Boston University Medical Campus, Boston, MA, USA

2 Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA

For all author emails, please log on.

Fibrogenesis & Tissue Repair 2010, 3:25  doi:10.1186/1755-1536-3-25

Published: 6 December 2010



During scleroderma (SSc) pathogenesis, fibroblasts acquire an activated phenotype characterized by enhanced production of extracellular matrix (ECM) and constitutive activation of several major signaling pathways including extracellular signal-related kinase (ERK1/2). Several studies have addressed the role of ERK1/2 in SSc fibrosis however the mechanism of its prolonged activation in SSc fibroblasts is still unknown. Protein phosphatase 2A (PP2A) is a key serine threonine phosphatase responsible for dephosphorylation of a wide array of signaling molecules. Recently published microarray data from cultured SSc fibroblasts suggests that the catalytic subunit (C-subunit) of PP2A is downregulated in SSc. In this study we examined the role and regulation of PP2A in SSc fibroblasts in the context of ERK1/2 phosphorylation and matrix production.


We show for the first time that PP2A mRNA and protein expression are significantly reduced in SSc fibroblasts and correlate with an increase in ERK1/2 phosphorylation and collagen expression. Furthermore, transforming growth factor β (TGFβ), a major profibrotic cytokine implicated in SSc fibrosis, downregulates PP2A expression in healthy fibroblasts. PP2A-specific small interfering RNA (siRNA) was utilized to confirm the role of PP2A in ERK1/2 dephosphorylation in dermal fibroblasts. Accordingly, blockade of autocrine TGFβ signaling in SSc fibroblasts using soluble recombinant TGFβ receptor II (SRII) restored PP2A levels and decreased ERK1/2 phosphorylation and collagen expression. In addition, we observed that inhibition of ERK1/2 in SSc fibroblasts increased PP2A expression suggesting that ERK1/2 phosphorylation also contributes to maintaining low levels of PP2A, leading to an even further amplification of ERK1/2 phosphorylation.


Taken together, these studies suggest that decreased PP2A levels in SSc is a result of constitutively activated autocrine TGFβ signaling and could contribute to enhanced phosphorylation of ERK1/2 and matrix production in SSc fibroblasts.